

# Roadmap to Water Supply Resiliency

PRESENTED BY

Paul Sellier
Water Resources Director

March 13, 2023



#### Workshop Agenda: Strategic Water Supply Assessment

- Overview of Marin Water
- Project Update
- Development of Focused Strategies
- Towards a Recommended Integrated Strategy
- Next Steps

#### Your Water District – the longest running in California

**Mission:** Manage our natural resources in a sustainable manner and provide reliable, high-quality drinking water at a reasonable price

- Established in 1912 as state's first municipal water District
- 147 sq. mile service area covers central and southern Marin
- 191,000+ people served
- Nearly 8 billion gallons of water delivered annually
- As a public agency, the District does not make a profit by law, we only charge customers the cost of providing reliable, high-quality drinking water



#### Marin Water is Locally Sourced

- 75% comes from Marin reservoirs
   (Combined total storage = 80,000 AF)
  - Mt. Tamalpais Watershed
  - Nicasio & Soulajule reservoirs
- 25% is imported from Sonoma County\*
  - Russian River

Santa Rosa **RUSSIAN RIVER RUSSIAN RIVER** PIPELINE SONOMA COUNTY Tomales Soulaiule Nicasio SERVICE AREA Drakes Bay San Rafael Phoenix Bon Tempe **Tiburon** Sausalito PACIFIC OCEAN

<sup>\*</sup>Based on long-term averages

## Process for Assessment

## **Key Project Scope Elements**

Recommendations Understanding Current Risks & Establishing Goals Identifying & Evaluating Alternatives & Path Forward Conduct Confirm Develop Develop **Develop** Prepare Water Supply **Decision** Water Supply **Evaluation** of Water Supply Roadmap Strategy and and Demand Water Supply Support **Alternatives** and Report Model **Alternatives** Goals **Scenarios** 

#### **Strategic Water Supply Assessment: Scenarios**

- Scenarios are intended to capture uncertainty that is NOT in management control for this decision
- Water Supply Hydroclimate
  - Historical
  - Climate projections
  - Paleoclimate reconstructions
  - Synthetic droughts
- Water Demand
  - Recent trends
  - Population growth and land use
  - Passive levels increasing water use efficiency

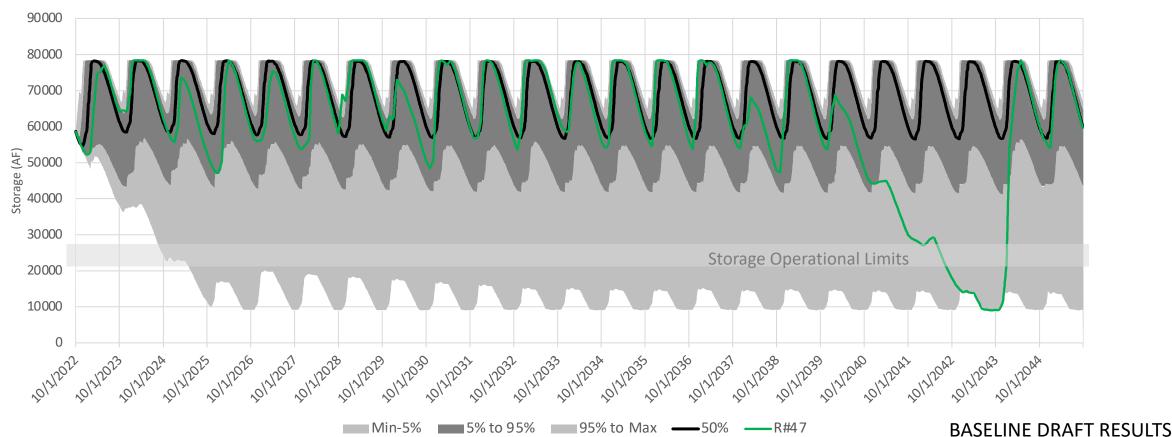
Scenario 1 – Current Trends

Scenario 2 – Short and Severe Drought

Scenario 3 – Beyond Drought of Record

Scenario 4 – Abrupt Disruptions

## **Draft Scenario Assumptions**


| Scenario                              | Hydroclimate Assumptions                                                                          | Demand Assumptions                                   | Operational Assumptions                                                                                                                                                     |
|---------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scenario 1 – Current Trends           | Historical observed                                                                               | Passive-level savings; drought conservation per WSCP | Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation                                                                   |
| Scenario 2 – Short and Severe Drought | Severe 4-Yr drought (2020, 2021, 1976, 1977)                                                      | Passive-level savings; drought conservation per WSCP | Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation                                                                   |
| Scenario 3 – Beyond Drought of Record | Long-range, extended 6- or 7-Yr drought (based on climate change projections)                     | Passive-level savings; drought conservation per WSCP | Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation                                                                   |
| Scenario 4 – Abrupt Disruptions       | Severe 2-Yr (2020, 2021) or 4-Yr<br>drought (2020, 2021, 1976, 1977);<br>high wildfire likelihood | Passive-level savings; drought conservation per WSCP | Operational disruptions due to post-wildfire sediment loads; Treatments plants at reduced capacity (Bon Tempe offline & San Geronimo @ 50% operating capacity for 6 months) |

Conservation is a Water Management Alternative

#### **Scenarios Provide Planning Level Estimates of Deficit**

| Scenario                              | Max. Deficit Duration | Annual Deficit (AFY)      |
|---------------------------------------|-----------------------|---------------------------|
| Scenario 2 – Short and Severe Drought | 4 years               | 7,500 – 8,500 AFY (4 yrs) |

Simulated MMWD Total Reservoir Storage, WY 2023-2045, Scenario 2



## Roadmaps

#### Water Management Alternatives Categories

- Water Management Alternatives considered in 6 main categories
  - Water Conservation
  - Sonoma-Marin Partnerships
  - Local Surface Storage
  - Water Purchases with Conveyance through Bay Interties
  - Desalination
  - Water Reuse

#### Pursuing Demand Reduction through Water Efficiency

#### WATER EFFICIENCY PROGRAM

SWSA's WATER CONSERVATION ELEMENT

WATER EFFICIENCY
MASTER PLAN

DROUGHT RESPONSE ACTIONS

- Incentivized, voluntary program
- Quantifiable programs with calculated water savings
- Participation levels limited to be achievable based on historic data
- Short, medium, long term demand reduction goals maximizing the potential water savings
- Leading edge initiatives
- Incentivized, voluntary program
- May include adaptation of ordinances
- Includes non-quantifiable programs
- Short term, low frequency
- Initially voluntary, progress to mandatory
- Defined short term savings objectives per adopted Shortage Level (WSCP)
- Provides some long-term benefit

#### **SWSA Conservation Element Program Details & Cost**

| Activity Name (program offer)                      | Annual Participation | Unit Cost (\$/AF) | Cumulative Water Savings in 2045 (AF) |  |  |  |  |  |
|----------------------------------------------------|----------------------|-------------------|---------------------------------------|--|--|--|--|--|
| Actual Drought Response Program Savings            |                      |                   |                                       |  |  |  |  |  |
| High Efficiency Toilets                            | 30                   | \$2,435           | 6                                     |  |  |  |  |  |
| High Efficiency Clothes Washers                    | 390                  | \$732             | 116                                   |  |  |  |  |  |
| Flume Home Water Monitor                           | 2,000                | \$442             | 904                                   |  |  |  |  |  |
| Drought Program Turf Conversion                    | 380,000              | \$2,024           | 780                                   |  |  |  |  |  |
| Drought Program Mulch Madness                      | 47,600               | \$3,116           | 97                                    |  |  |  |  |  |
| Hot Water Recirculating System                     | 150                  | \$1,677           | 17                                    |  |  |  |  |  |
| Forecasted Ongoing SWSA Water Conservation Element |                      |                   |                                       |  |  |  |  |  |
| AMI Leak Notifications                             | 1,250                | \$287             | 9,990                                 |  |  |  |  |  |
| Non-Functional Turf Conversion                     | 70,000               | \$2,132           | 4,505                                 |  |  |  |  |  |
| Turf Conversion – Post Drought Programs            | 100,000              | \$1,985           | 4,282                                 |  |  |  |  |  |
| Pool Cover Rebates                                 | 90                   | \$877             | 642                                   |  |  |  |  |  |
| Residential Irrigation Controller                  | 100                  | \$1,035           | 586                                   |  |  |  |  |  |
| Residential CAP's                                  | 500                  | \$13,763          | 378                                   |  |  |  |  |  |
| Laundry-to-Landscape System                        | 40                   | \$4,988           | 154                                   |  |  |  |  |  |
| Rain Barrel Rebate Program                         | 15,000               | \$8,820           | 58                                    |  |  |  |  |  |
| Program Overhead                                   |                      | \$414             |                                       |  |  |  |  |  |
| Total                                              |                      | \$1,792           | 22,515                                |  |  |  |  |  |

### **Additional Water Efficiency Programs & Activities**

- Incentive programs target savings for both indoor & outdoor
- Landscape Plan Review
- Education Program
  - Youth Education in Schools
  - Contractors (builders, landscapers, plumbers)
  - Homeowners
- Outreach Events
  - Local community events
- Local, State, and National Partnerships
  - ie: Master Gardeners, Alliance for Water Efficiency
- Water Waste Prohibitions
  - Follow-up on reported water waste
- Customer Resources
  - ie: Weekly watering schedule

#### **Current Incentive Offers**

- High Efficiency Clothes Washers
- High Efficiency Toilets
- Flume devices (*Grant funded*)
- Hot water recirculating systems
- Showerheads, faucet aerators
- Dye tablets for toilet leak detection
- Lawn replacement
- Rain barrels
- WaterSense irrigation controllers
- Laundry-to-landscape graywater kits
- Pool and spa covers
- Hose nozzles

#### **Evaluation Criteria**

| Criteria          | Description                                                                                                                                                                                             | Measurement                                    |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| Yield             | Estimate of new supply or reduced demand option can provide during dry years                                                                                                                            | AFY<br>5-pt qualitive scale                    |
| Cost              | Cost per acre-foot of supply or demand reduction                                                                                                                                                        | \$/AFY<br>5-pt qualitive scale                 |
| Timing            | Estimate of time required before project could be implemented considering planning, design, permitting, and implementation                                                                              | Years before alternative could begin operation |
| Reliability       | Reliability of supply during periods of dry year need                                                                                                                                                   | 5-pt qualitive scale                           |
| Flexibility       | Degree to which the option could be operated (or implemented) across a wide range of hydrologic conditions by having ability to adjust the magnitude of operation each year to meet required conditions | 5-pt qualitive scale                           |
| Environmental     | Anticipated positive or negative impacts on the natural environment                                                                                                                                     | 5-pt qualitive scale                           |
| Feasibility       | Maturity of the concept and technical ability to implement                                                                                                                                              | 5-pt qualitive scale                           |
| Energy            | Estimated change in energy required to implement and operate                                                                                                                                            | KWH/AF<br>5-pt qualitive scale                 |
| Permitting/Legal  | List of permits required and status if option has begun permitting process                                                                                                                              | 5-pt qualitive scale                           |
| Social            | Description of positive or negative socioeconomic effects                                                                                                                                               | 5-pt qualitive scale                           |
| Jurisdiction      | Primary jurisdiction for implementation                                                                                                                                                                 | 5-pt qualitive scale                           |
| Public Acceptance | Anticipated public acceptance                                                                                                                                                                           | 5-pt qualitive scale                           |

#### **Evaluation of Water Management Alternatives**

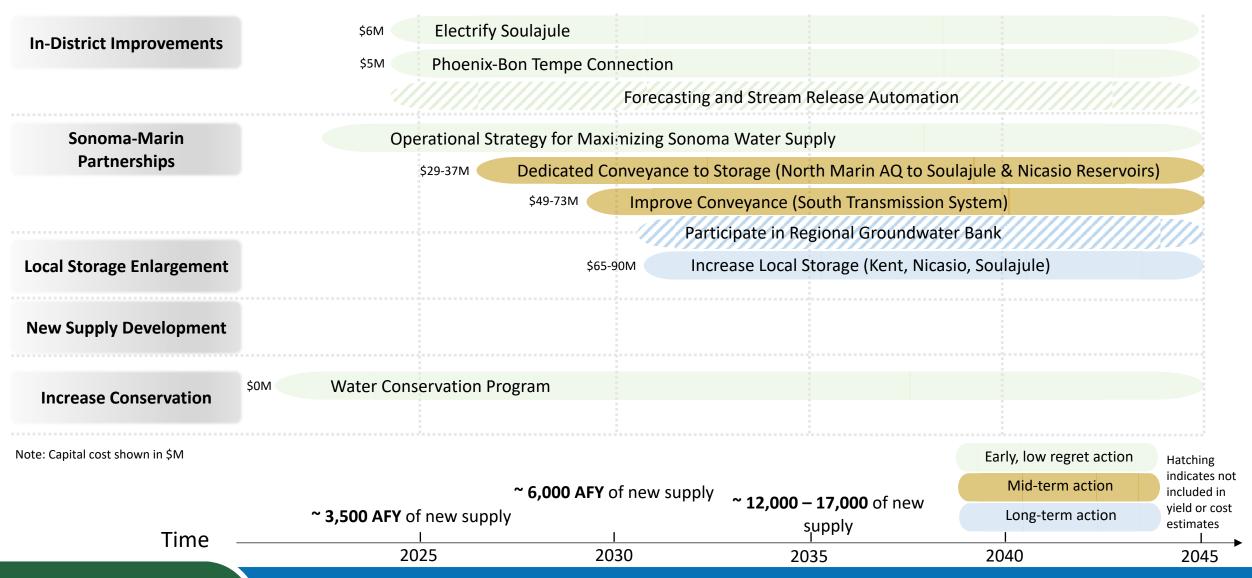
#### **Evaluation Summary of Alternatives**

|      |                                                                         | 1            |             |               |                    |   |                    | _ |   | _ |               |                  |                 |
|------|-------------------------------------------------------------------------|--------------|-------------|---------------|--------------------|---|--------------------|---|---|---|---------------|------------------|-----------------|
| Code | Name                                                                    | Yield Rating | Cost Rating | Timing Rating | Reliability Rating |   | Feasibility Rating |   | _ |   | Social Rating | Jurisdiction Rat | Public Acceptan |
| DS1A | Marin Regional Desalination Facility- 5 MGD Stand Alone                 | 2            | 5           | 4             | 1                  | 4 | 2                  | 4 |   | 5 |               |                  | 3               |
| DS1B | Marin Regional Desalination Facility - 5 MGD Expandable                 | 2            |             | 4             | 1                  | 4 | 2                  | 4 |   |   |               |                  | 3               |
| DS1C | Marin Regional Desalination Facility - 10 MGD Expandable                | 1            |             | 4             | 1                  | 4 | 2                  | 4 |   |   |               |                  | 3               |
| DS1D | Marin Regional Desalination Facility - 15 MGD                           | 1            |             | 4             | 2                  | 4 | 2                  | 4 |   |   |               |                  | 3               |
| DS2  | Containerized Desalination Facility                                     | 2            |             | 3             | 1                  | 4 | 3                  | 4 | 5 | 5 |               | 2                | 3               |
| DS3  | Bay Area Regional Desalination Facility                                 | 2            | 5           | 5             | 1                  | 4 | 2                  | 4 | 4 | 5 |               | 3                | 3               |
| DS4  | Petaluma Brackish Groundwater Desalination Facility                     | 2            | 3           | 3             | 3                  | 3 | 2                  | 3 | 3 | 3 |               | 3                | 2               |
| LS1A | Soulajule Enlargement                                                   | 2            | 3           | 4             | 2                  | 4 | 3                  | 4 |   | 4 | 5             | 4                | 4               |
| LS1B | Nicasio Enlargement                                                     | 2            | 3           | 4             | 2                  | 4 | 3                  | 4 |   | 4 | 4             | 4                | 4               |
| LS1C | Kent Enlargement                                                        | 2            | 3           | 4             | 2                  | 4 | 3                  | 4 | 1 | 4 | 3             | 4                | 3               |
| LS2A | Halleck Reservoir                                                       | 3            | 5           | 5             | 4                  | 5 | 4                  | 5 | 1 | 5 | 5             | 5                | 5               |
| LS2B | Devil's Gulch Reservoir                                                 | 3            | 5           | 5             | 4                  | 5 | 4                  | 5 | 1 | 5 | 5             | 5                | 5               |
| LS3A | Movable Spillway Gates - Soulajule                                      | 5            | 2           | 2             | 2                  | 2 | 2                  | 2 | 1 | 2 | 2             | 1                | 1               |
| LS3B | Movable Spillway Gates - Nicasio                                        | 5            | 2           | 2             | 2                  | 2 | 2                  | 2 | 1 | 2 | 2             | 1                | 1               |
| LS3C | Movable Spillway Gates - Kent                                           | 5            | 2           | 2             | 2                  | 2 | 2                  | 2 | 1 | 2 | 2             | 1                | 1               |
| LS3D | Movable Spillway Gates - Alpine                                         | 5            |             |               |                    |   |                    |   | 1 |   |               | 1                | 1               |
| LS4  | Phoenix Lake - Bon Tempe Lake Connection                                | 5            | 1           | 1             | 1                  | 2 | 1                  | 2 |   | 2 | 2             | 1                | 1               |
| LS5  | Soulajule Electrification                                               | 5            | 1           | 1             | 1                  | 2 | 1                  | 2 | 1 | 2 | 2             | 1                | 1               |
| SM1  | Maximize Use of Sonoma Water - Existing Facilities                      | 4            | 1           | 1             | 3                  | 1 | 1                  | 2 |   | 1 | 2             | 2                | 1               |
| SM2A | Maximize Use of Sonoma Water - Resolve Bottlenecks                      | 3            | 3           | 2             | 3                  | 1 | 1                  | 2 | 2 | 1 | 2             | 2                | 1               |
| SM2B | Maximize Use of Sonoma Water - Resolve Bottlenecks+South Transmission   | 3            | 4           | 3             | 2                  | 3 | 1                  | 3 |   |   |               | 2                | 1               |
| SM3A | Maximize Use of Sonoma Water - Dedicated Conveyance Stafford to Nicasio | 4            | 4           | 2             | 4                  | 2 | 1                  | 2 | 2 | 2 | 2             | 2                | 2               |
| SM3B | Maximize Use of Sonoma Water - Dedicated Conveyance Kastania to Nicasio | 2            | 4           | 3             | 2                  | 3 | 1                  | 3 | 3 | 3 | 3             | 3                | 2               |
| SM3C | Maximize Use of Sonoma Water - Dedicated Conveyance Cotati to Soulajule | 2            | 4           | 3             | 2                  | 3 | 1                  | 3 | 3 | 3 | 3             | 3                | 2               |
| SM4  | Regional Groundwater Bank                                               | 4            | 2           | 3             | 3                  | 3 | 2                  | 2 | 2 | 3 | 2             | 3                | 1               |
| WC01 | Temporary Urgency Change Permits (TUCPs)                                | 4            | 1           | 1             |                    | 1 | 1                  | 3 | 1 | 3 |               | 4                | 2               |
| WC02 | Water Shortage Contingency Plan (WSCP) - Stage 1-3                      | 1            |             |               |                    |   |                    |   |   |   |               |                  | 3               |
| WC1  | Water Conservation Program                                              | 2            |             | 1             | 1                  | 1 | 1                  | 1 | 1 | 1 |               | 1                | 1               |
| WC2  | Regulatory Driven Program                                               | 2            | 5           |               |                    | 1 | 1                  | 1 | 1 | 1 |               | 1                | 3               |
| WP1  | EBMUD Intertie                                                          | 2            | 4           | 3             | 4                  | 4 | 1                  | 3 | 3 | 4 | 3             | 5                | 2               |
| WP2  | CCWD Intertie                                                           | 2            | 5           | 4             | 3                  | 4 | 1                  | 3 | 3 | 4 | 3             | 4                | 2               |
| WP3A | NBA Intertie - MMWD                                                     | 2            | 5           | 4             | 3                  | 4 | 1                  | 3 | 3 | 4 | 3             | 4                | 2               |
| WP3B | NBA Intertie - Sonoma Aqueduct                                          | 2            |             | 4             | 3                  | 4 | 1                  | 3 | 3 | 4 | 3             | 4                | 2               |
| WP5  | SFPUC Intertie                                                          | 4            | 5           | 4             | 3                  | 4 | 1                  | 4 | 2 | 4 | 3             | 4                | 3               |
| WR1A | Recycled Water Expansion - Peacock Gap                                  | 5            | 5           | 3             | 1                  | 3 | 1                  | 2 |   | 2 | 3             | 1                | 1               |
| WR1B | Recycled Water Expansion - San Quentin                                  | 5            |             | 3             | 1                  | 3 | 1                  |   |   |   | 3             | 1                | 1               |
| WR2  | Regional Indirect Potable Reuse (IPR)                                   | 1            | 5           | 5             | 1                  | 5 | 4                  | 4 | 5 | 4 | 3             | 2                | 4               |
| WR3A | CMSA Direct Potable Reuse (DPR) - Raw Water Augmentation                | 2            |             |               |                    | 4 | 5                  | 4 |   | 5 | 4             | 2                | 5               |
| WR3B | CMSA Direct Potable Reuse (DPR) - Treated Water Augmentation            | 2            |             |               | 2                  | 4 | 5                  | 4 | 4 | 5 | 4             | 2                | 5               |
| WR4  | Regional Direct Potable Reuse (DPR)                                     | 1            |             |               | 2                  | 5 | 5                  | 4 | 5 | 5 | 4             | 2                | 5               |

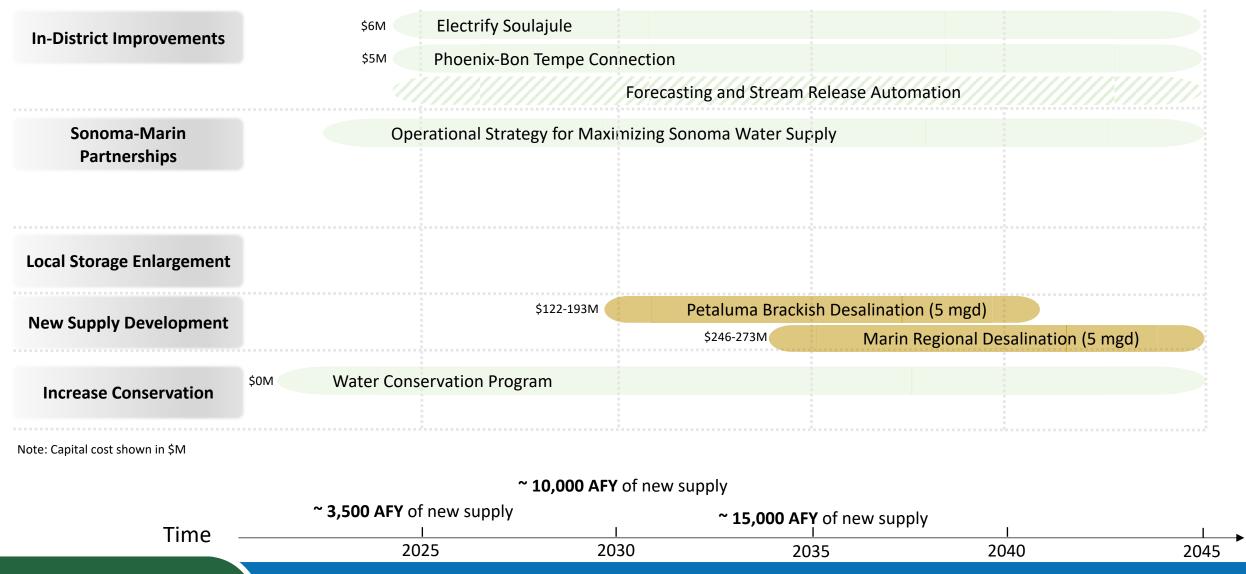
### **Project Team Developed 3 Potential Strategies**

#### Marin-Sonoma Focused Strategy

- Emphasizes alternatives that maximize existing local and regional water supplies
- Sonoma-Marin partnerships, local storage optimization, interconnections


#### Desalination Focused Strategy

- Emphasizes alternatives which add new local drought-resilient supplies
- Brackish and Bay desalination


#### Bay Intertie Focused Strategy

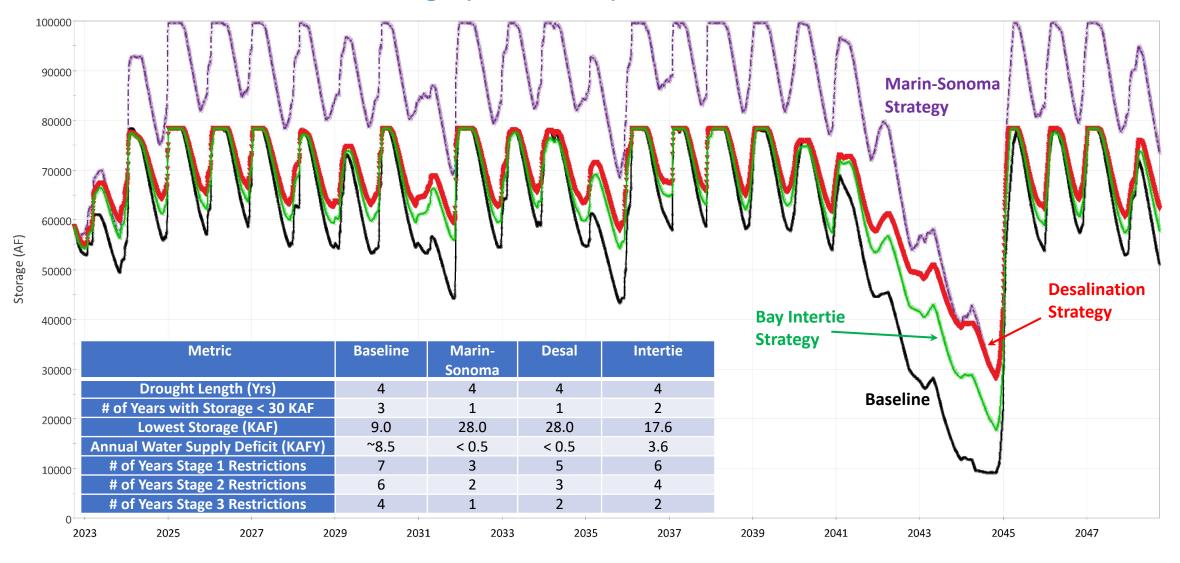
- Emphasizes alternatives that diversify imported water from different source watersheds
- Water purchases with Bay interties


## Roadmap for Marin-Sonoma Focused Strategy



## Roadmap for **Desalination** Focused Strategy




## Roadmap for **Bay Intertie** Focused Strategy



#### **Performance of Strategies**

**Total MMWD Reservoir Storage (Scenario 2)** 

Baseline Scenario 2



Model

Desal Strategy - S2

Bay Intertie Strategy - S2

Marin-SW Strategy - S2

## **Comparison of Strategies**

|                                | Marin-Sonoma Focused Strategy | Desalination Focused Strategy | Bay Intertie Focused Strategy |
|--------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Performance in Achieving Goals | <b>\</b> \ \ \                | <b>\ \ \</b>                  | <b>√</b>                      |
| Dry Year Yield (AFY)           | 12,000 - 17,000               | 15,000                        | 10,000                        |
| Cost per AFY (\$)              | \$1,900                       | \$3,000                       | \$2,200                       |
| Annual Cost (\$M)              | \$23 - 31M                    | \$46M                         | \$22M                         |
| Capital Cost (\$M)             | \$143 - 291M                  | \$429M                        | \$122M                        |
| Reliability Rating             | M/H                           | Н                             | L/M                           |
| <b>Environmental Rating</b>    | M/H                           | L/M                           | M                             |
| Permitting/Legal Risk          | M                             | L                             | L/M                           |
| Social Rating                  | M                             | L/M                           | M                             |
| Jurisdiction Rating            | M/H                           | M/H                           | L                             |

## **Comparison of Strategies – Benefits and Challenges**

| Roadmap                       | Benefits                                                                                                                                                                                                              | Challenges / Risks                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Marin-Sonoma Focused Strategy | <ul> <li>Achieves performance goals</li> <li>Builds on existing infrastructure &amp; system</li> <li>Integrates supply AND storage</li> <li>Building on regional partnerships</li> <li>Lower cost</li> </ul>          | <ul> <li>Limited hydrological diversification</li> <li>Not fully drought resistant in multi-year extreme drought</li> <li>Perceived increased competition for Winter Water</li> </ul>                                                                                                                                                                                                           |
| Desalination Focused Strategy | <ul> <li>Achieves performance goals</li> <li>Drought-resistant supply</li> <li>Jurisdiction primarily MMWD</li> <li>Diversification of supply</li> </ul>                                                              | <ul> <li>Complex permitting &amp; environmental considerations</li> <li>High capital and operating cost relative to other options</li> <li>High energy use / significant increase in carbon footprint</li> <li>Poorly suited for intermittent operations</li> <li>Very complex operations that results in discount to design capacity</li> <li>Ballot process with uncertain outcome</li> </ul> |
| Bay Intertie Focused Strategy | <ul> <li>Flexible water purchase for drought conditions</li> <li>Some level of hydrological diversification</li> <li>Provides connection to greater Bay Area for water supply and resiliency opportunities</li> </ul> | <ul> <li>Complex coordination with up to 6 agencies to obtain water</li> <li>Need to pursue water transfers in highly competitive environment</li> <li>Uncertainty of available water in extreme drought</li> <li>Principles adopted by EBMUD board severely limit use and flexibility of intertie</li> <li>Only partially achieves performance goals</li> </ul>                                |

#### **Toward a Recommended Strategy**

- Learn from evaluations, analysis, and findings from the past year
- Blend promising elements from various potential strategies for integrated roadmap
- Identify common, low regret actions and flexible options

#### **Main Elements of Integrated Strategy**

#### Water Conservation and Flexible Drought Measures

- Expand long-term water conservation program
- Continue implementation of Water Shortage Contingency Plan measures for drought conservation

#### Improve Operability and Flexibility of Storage Facilities

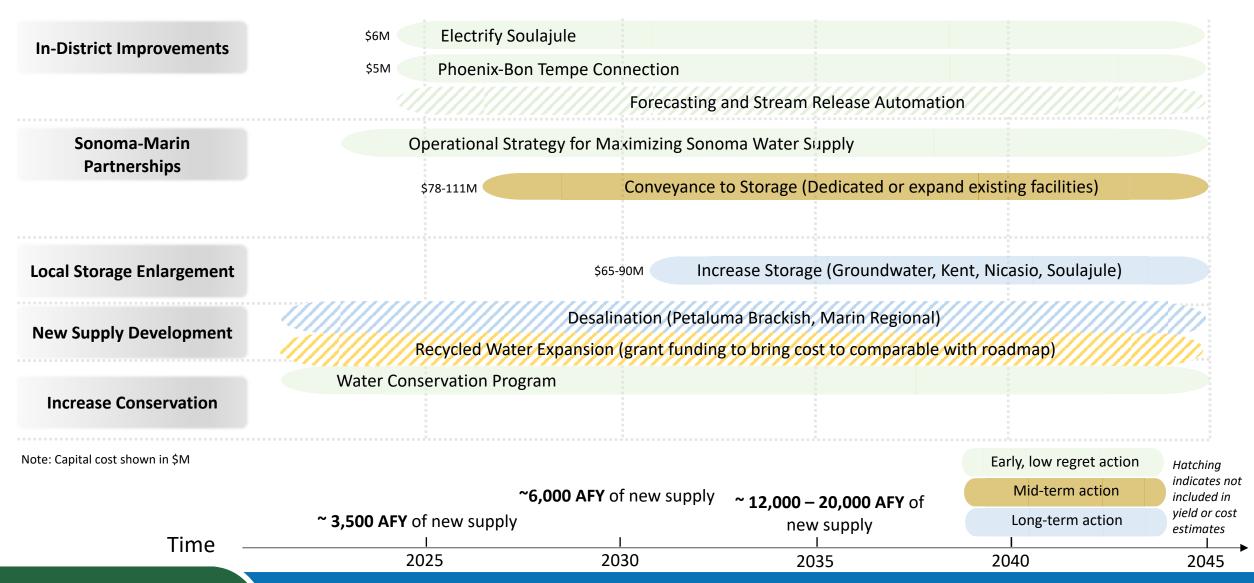
- Electrify pump station at Soulajule
- Connect Phoenix Lake and Bon Tempe Reservoir
- More strategic implementation of Temporary Urgency Change Permits
- Forecasting and stream release automation

#### Maximize Use of Sonoma Water Supplies

- Operational strategy to maximize take of Sonoma Water supplies
- Develop dedicated conveyance to storage (Phase 1 Stafford to Soulajule/Nicasio, Phase 2 NMAQ to Stafford )
- Improve conveyance of water to MMWD system (South Transmission System and possible Kastania PS expansion)

#### Increase Local Storage

- Develop an additional 20 KAF of storage
- Possible movable spillway gates at Soulajule and Nicasio


#### Develop New Local Supplies

- Petaluma brackish desalination
- Expand recycled water distribution (with grant cost share)

#### Regional Water Bank

Explore participation in regional groundwater bank

## Roadmap for Integrated Strategy



#### **Understanding the Roadmap**

**Electrify Soulajule** 

Provides PG&E line power to the pump station so that the lake can be operated more frequently. Estimated yield of 420 AFY. Capital cost estimated \$7.2M. Cost per AF ~\$1,800.

**Phoenix-Bon Tempe Connection** 

Provides connection from Phoenix Lake to Bon Tempe reservoir. Estimated yield 260 AFY. Capital Cost \$5.2M. Cost per AF  $\sim$  \$1,611.

Forecasting and Stream Release Automation

Improve forecasting capabilities and stream release automation.

Operational Strategy for Maximizing Sonoma Water Supply Develop operational rules to guide the timing and quantity of water purchased from Sonoma to maximize take of supplemental water in dry years while minimizing risk of reservoirs spills.

Water Conservation Element

Pursue a variety of activities to incentivize water use efficiency.

## **Understanding the Roadmap** (continued)

Conveyance to Storage (Dedicated or expand existing facilities)

Increase Local Storage (Kent, Nicasio, Soulajule)

Participate in Regional Groundwater Bank

Desalination (Petaluma Brackish, Marin Regional)

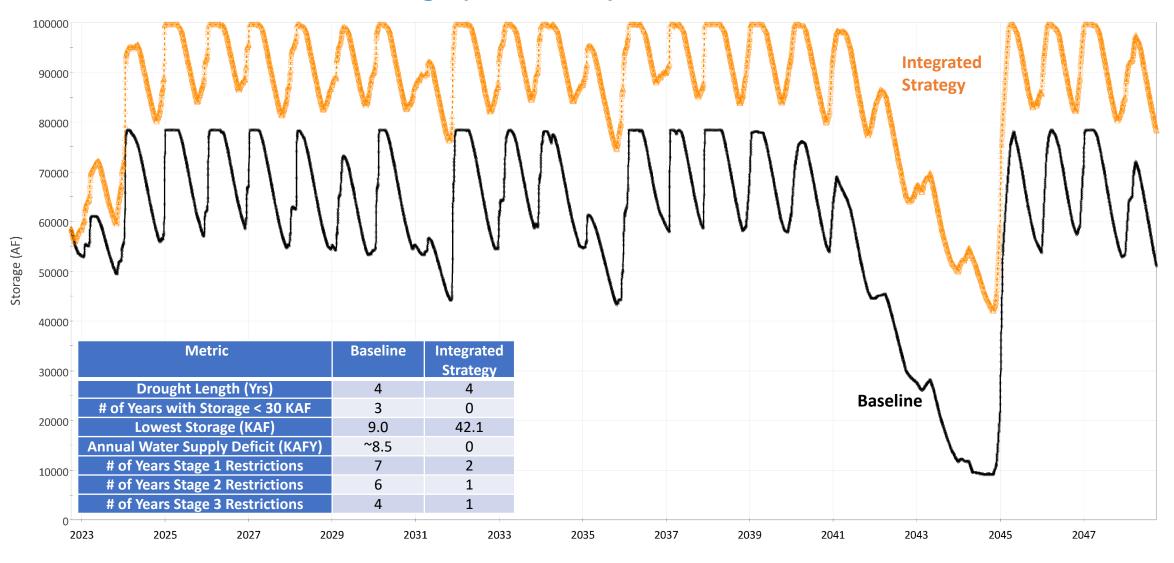
Recycled Water Expansion (grant funding to bring cost to comparable with roadmap)

Increasing the capacity of existing infrastructure to take supplemental winter water from Sonoma and place in reservoir storage or constructing dedicated conveyance to reservoir storage. Estimated yield is 4,000 - 5,500 AFY. Capital cost \$111-158M. Cost per AFY is  $^{\sim}$  \$3000 - 3,150.

Increasing the capacity of local storage by raising one of the dams. Estimated yield is 5,000 AFY. Estimated capital cost is \$90M and cost per AF is  $\sim$  \$1,650.

Pumping existing groundwater from the Santa Rosa Plain aquifer for consumption could create the necessary capacity to store winter water from Sonoma.

Monitor advances in desalination technology, track installation of desalination plants in California and perform feasibility analysis for Petaluma brackish desalination which conceptually could yield 5,000 AFY.


Pursue grant opportunities for recycled water projects to reduce the cost to the average cost per acre foot for the roadmap.

## **Benefits and Challenges of Integration Strategy**

| Roadmap                             | Benefits                                                                                                                                                                                                                                                                                                                                                                           | Challenges / Risks                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Integrated<br>Strategy              | <ul> <li>High potential yield</li> <li>Builds on existing infrastructure &amp; system</li> <li>Integrates supply AND storage</li> <li>Building on regional partnerships</li> <li>Increases hydrological diversification</li> <li>Multiple options for supply (multiple options for conveyance and storage, incorporates recycling and desalination)</li> <li>Lower cost</li> </ul> | <ul> <li>Some elements are not fully drought resistant in multi-year extreme drought</li> <li>Perceived increased competition for Winter Water</li> </ul>                                                                                                                                                                                                                                       |
| Marin-Sonoma<br>Focused<br>Strategy | <ul> <li>Achieves performance goals</li> <li>Builds on existing infrastructure &amp; system</li> <li>Integrates supply AND storage</li> <li>Building on regional partnerships</li> <li>Lower cost</li> </ul>                                                                                                                                                                       | <ul> <li>Limited hydrological diversification</li> <li>Not fully drought resistant in multi-year extreme drought</li> <li>Perceived increased competition for Winter Water</li> </ul>                                                                                                                                                                                                           |
| Desalination<br>Focused<br>Strategy | <ul> <li>Achieves performance goals</li> <li>Drought-resistant supply</li> <li>Jurisdiction primarily MMWD</li> <li>Diversification of supply</li> </ul>                                                                                                                                                                                                                           | <ul> <li>Complex permitting &amp; environmental considerations</li> <li>High capital and operating cost relative to other options</li> <li>High energy use / significant increase in carbon footprint</li> <li>Poorly suited for intermittent operations</li> <li>Very complex operations that results in discount to design capacity</li> <li>Ballot process with uncertain outcome</li> </ul> |
| Bay Intertie<br>Focused<br>Strategy | <ul> <li>Flexible water purchase for drought conditions</li> <li>Some level of hydrological diversification</li> <li>Provides connection to greater Bay Area for water supply and resiliency opportunities</li> </ul>                                                                                                                                                              | <ul> <li>Complex coordination with up to 6 agencies to obtain water</li> <li>Need to pursue water transfers in highly competitive environment</li> <li>Uncertainty of available water in extreme drought</li> <li>Principles adopted by EBMUD board severely limit use and flexibility of intertie</li> <li>Only partially achieves performance goals</li> </ul>                                |

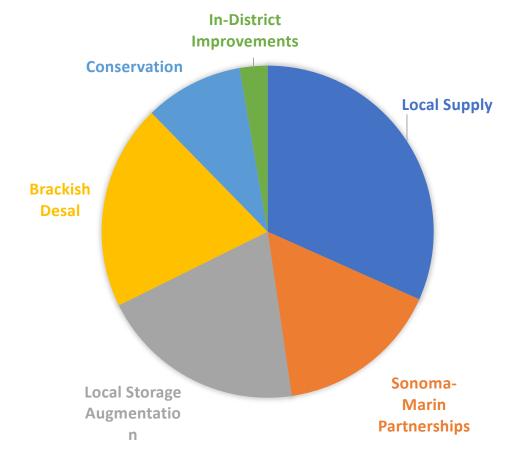
#### **Performance of Integrated Strategy**

**Total MMWD Reservoir Storage (Scenario 2)** 



Model

Baseline Scenario2


Integrated Strategy - S2

Note: Simulation for Integrated Strategy includes Petaluma Brackish desalination.

#### **Integrated Strategy Leads to Improved Resilience**

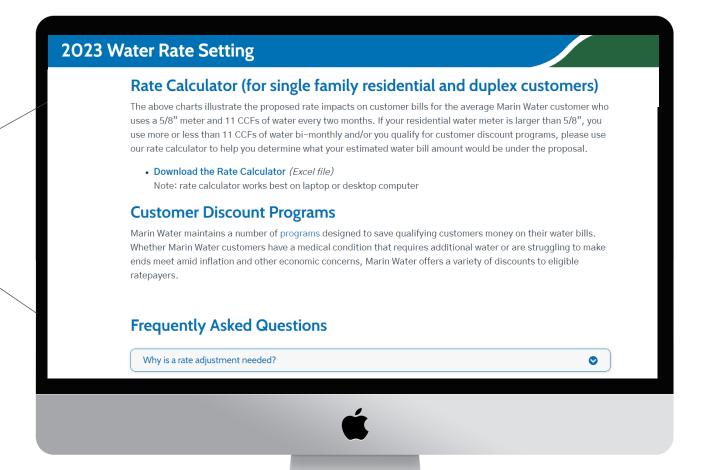
- District is faced with ample supply in most years, but stressed during extended period of drought
- Future drought frequency and severity are uncertain, but scenarios support assessment of uncertainty by looking at history, using future projections, and using stress tests
- Water management actions available to District provide sufficient capability to address historical and projected future droughts (including stress test droughts)
- A robust portfolio of actions in the Integrated Strategy diversifies drought supplies and significantly increases the District's resilience
- Benefits will occur in non-extended drought years with more durable supply and increased storage
- Implementation will require timely and sustained investments, flexible management of some options, increased collaboration with regional partners, and leveraging of state and federal grant funding

## ENHANCING MMWD'S DROUGHT WATER SUPPLY PORTFOLIO



## Roadmap Update


#### Roadmap Update: Actions Since Roadmap Adopted


- Early Actions underway:
  - Electrify Soulajule Pump Station PG&E large load study underway
  - Phoenix to Bon Tempe Water quality Impacts analysis and design
  - Stream release automation -
  - Optimization of Supplemental water deliveries
- Water Conservation
- Local Storage and Sonoma Options Scope of work under development
- Petaluma Brackish Desalination collaborating with Petaluma and North Marin to explore Feasibility

## Roadmap Update: 4-year water rate proposal includes funding for implementation of Water Supply Roadmap

- Electrify Soulajule Reservoir (\$6.4M)
- Phoenix Lake-Bon Tempe Connection (\$4.4M)
- Roadmap Implementation and Pre-Design (\$10.9M)
- Conservation Program (\$6.8M)
- Water Supply Project Reserve (\$10.0M)
- Maximize Sonoma Water (\$9.6M)

#### Website: marinwater.org/2023RateSetting



